1.2. Probabilistic Models
"A probabilistic model is a mathematical description of an uncertain situation."
Elements of a Probabilistic Model
- The sample space \(\Omega\).
- The probability law
- an event \(A\) (a set of possible outcomes)
- a probability of \(A\); \(P(A)\) (non-negative number)
- that encodes one's knowledge or belief about the collective likelihood of the elements of \(A\).
- The probability law must satisfy certain properties to be introduced shortly.
Sample Spaces and Events
- The experiment is an underlying process that every probabilistic model involves, from which exactly one of possible outcomes occurs.
- The sample space of the experiment : the set of all possible outcomes, and is denoted by \(\Omega\).
- The event : a collection of possible outcomes
Choosing an Appropriate Sample Space
Mutually exclusive & collectively exhaustive
- Regardless of their number, each element of the sample space should be distinct and mutually exclusive, so that when the experiment is carried out there is a unique outcome.
- Mutually exclusive : One trial can only have one come at a time
- The sample space chosen for a probabilistic model must be collectively exhaustive, in the sense that no matter what happens in the experiment, one always obtains an outcome that has been included in the sample space.
- Collectively exhaustive : The number of 'all' cases must be taken into account
- In addition, the sample space should have enough detail to distinguish between all outcomes of interest to the modeler, while avoiding irrelevant details.
Sequential Models
- sample space for a pair of rolls
- Tree-based sequential description
Probability Laws
The sample space \(\Omega\) associated with an experiment.
The probability law assigns to every event \(A\) and the probability of \(A\) is a number \(P(A)\).
Probability Axioms
- (Non-negativity) \(P(A) \geq 0\), for every event \(A\).
- (Additivity) If \(A\) and \(B\) are two disjoint events, then the probability of their union satisfies
$$ P(A \cup B) = P(A) + P(B). $$
More generally, if the sample space has an infinite number of elements and \(A_1, A_2, \cdots\) is a sequence of disjoing events, then the probability of their union satisfies
$$ P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots. $$ - (Normalization) The probability of the entire sample space \(\Omega\) is equal to 1, that is, \(P(\Omega) = 1\)
* 3개 axioms로 P(A)<=1 derive 가능 -> 정리하기
Discrete Models
Discrete probability law
If the sample space consists of a finite number of possible outcomes, then the probability law is specified by the probabilities of the events that consist of a single element.
In particular, the probability of any event \(\{s_1,s_2, \cdots, s_n\}\) is the sum of the probabilities of its elements:
$$P(\{s_1,s_2,\cdots,s_n\}) = P(s_1) + P(s_2) + \cdots + P(s_n).$$
Discrete uniform probability law
If the sample space consists of n possible outcomes which are equally likely (i.e. all single-element events have the same probability), then the probability of any event A is given by
$$P(A) = \frac{\text{number of elements of} \ A}{n}.$$
Continuous Models
Probabilistic models with continuous sample spaces differ from their discrete counterparts in that the probabilities of the single-element events may not be sufficient to characterise the probability law.
Properties of Probability Laws
Consider a probability law, and let A, B, and C be events.
- (a) If \(A \in B\), then \(P(A) \leq P(B).\)
- (b) \(P(A \cup B) = P(A) + P(B) - P(A \cap B).\)
- (c) \(P(A \cup B) \leq P(A) + P(B).\)
- (d) \(P(A \cup B \cup C) = P(A) + P(A^{c} \cap B) + P(A^{c} \cap B^c \cap C).\)
Models and Reality
* Not everything in the textbook is included.
Bertrand's paradox
베르트랑의 역설(Bertrand's paradox)은 19세기 프랑스의 수학자 조세프 베르트랑(Joseph Bertrand)에 의해 제기된 확률 이론의 역설적인 문제입니다. 이 역설은 다양한 방식으로 정의될 수 있지만, 가장 잘 알려진 형태는 다음과 같습니다.
원의 둘레에 완전히 랜덤하게 한 점을 찍을 때, 그 점을 기준으로 만들어지는 무작위한 선분 중에서 어떤 선분이 원 내부를 완전히 둘러싸고 있는지의 확률을 생각해 보는 문제입니다. 이때 선분의 길이는 원의 둘레를 기준으로 랜덤하게 선택됩니다.
베르트랑의 역설은 선분의 길이를 선택하는 방법에 따라서 이 문제의 답이 다르게 나온다는 것을 보여줍니다. 선분의 길이를 선택하는 방법으로는 다음 세 가지가 가장 일반적으로 고려됩니다.
1. 원의 지름에 평행한 선분을 선택한다.
2. 원의 중심으로부터 일정 거리 이하의 선분을 선택한다.
3. 원의 둘레에서 임의의 두 점을 선택하고, 그 두 점을 연결하는 선분을 선택한다.
이 세 가지 방법에 따라 선분의 길이를 선택하면, 선분이 원 내부를 완전히 둘러싸고 있는 경우의 확률은 서로 다른 값으로 나타납니다. 이러한 다양한 결과로 인해 베르트랑의 역설은 확률 이론의 해석과 무작위성에 대한 이해를 깊이 있게 탐구하는 계기가 되었습니다. 이후 많은 수학자들이 이 문제에 대해 연구하고 다양한 해석을 제시하였습니다.
References
Bertsekas, D. P., Tsitsiklis, J. N. (2008). Introduction to Probability Second Edition. Athena Scientific.